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INTRODUCTION.

The solution of many problems of theoretical and
practical meteorology is hindered by a lack of informa-
tion concerning the simultaneous vertical and geographi-
cal distribution of certain meteorological elements. One
of these elements, barometric pressure, has always been
regarded as of supreme importance in weather forecast-
ing; and, with the increasing availability of aerological
data, there has developed a belief that barometric con-
ditions at certain free-air levels may possess prognostic
value with respect to surface weather. The elevation
of these strategic levels is not definitely known, but
the importance of the problem and the significance of
the possible results abundantly justify an attempt to
ascertain the nature of horizontal barometric gistri—
butions at the greatest possible heights in the atmosphere.

It is a relatively easy matter to secure information
concerning the vertical distribution of meteorological
elements at a small number of aerological stations; but
it is difficult to produce daily charts of the geographical
distribution of these elements. Recently published

apers have attempted to achieve this result for the
evels 1 and 2 kilometers (3,281 and 6,562 feet) above
sea level,! and subsequent study of the accuracy of the
maps thus produced indicates that they are reliable.?

he attainment of this objective, however, serves
only as a stimulus to the accomplishment of similar
results for higher levels. Yet, one encounters difficulties
owing to paucity of data, in attempting to extend the
original method to levels higher than 2 kilometers above
sea level. It has seemed that a more fruitful field might
be found in dealing directly with pressures than with
the estimation of air-column temperatures to such great
heights. In other words, previous studies have pro-
vided a means of securing a knowledge of the barometric
distribution at 1 and 2 kilometers above sea level. Is
it possible, with the pressure at these two levels, in
a.dtfition to the precisely-measured surface pressure, to
learn something about the pressure distribution at a
fourth, and higher, level ? ﬁle present paper seeks an
answer to this question.

PRELIMINARY CONSIDERATIONS.

Ratios between pressures at different free-air levels.—In
order to secure a foothold for an attack upon this problem,
mean monthly free-air pressures for various levels and
for the several aerological stations of the Waeather

1 Melsin%er.
the central and eastern Uniled
‘Washington, 1922,

3 Ihid: Concerning the accuracy of free-alr pressure maps. Mo. WEATHER REV.,
April, 1023, pp. 190-190.
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C. LeRoy: The pre%arat.lon and siznificance of free-alr pressure maps for
tates. Mo. WEATHER REV. SUPPLEMENT NNo. 21,

Bureau were examined. It was found that if a ratio is
formed between the pressure at some high level, p,, and
the surface, p,, and between the pressure at 2 kilometers
above sea level, p,, and 1 kilometer above sea level, p,,

£0.7450 /V 06550
0.7400 / 0.6500
0.7350 0.6450

&

i N “
& J 07300 0.6400 -
9 . >
Ry 5 N

pid
S
0.7250 / 0.6350
0.7200 ; 0 0.6300
[ ]
L0.7150 2] 0.6250.

i 1 ¢
P./Ps

F16. 1.—~The relation between ps/sp and ps/p: (annual means) at Drexel, Nebr.

~0.8950 L-

the ratio p./p, stands in an apparently linear relation to

Pa/p,- In other words,
p./?-= (GPz/Zh) + b;
in which @ and b are constants. Thus, if p,, p,, p,, @, and
b were known, p, could readily be computed from the
equation
- Pe=pL(@PP) +b] - - e e e (1)

Should such a simple relation hold for pressures at any
time, as well as for monthly means, it is seen at once that
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here is & method of great promise for computing free-air
pressures at high levels upon the basis of surface condi-
tions only.?

Figure 1 shows for the Drexel (Nebraska) aerological
station the relation between these ratios when 2z is
respectively 3 and 4 kilometers (9,842 and 13,123 feet)
above sea level. For these two levels the points lie
very close to the line of best fit, but, in considering a
similar relation for the 5-kilometer (16,404-foot) level,
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F16. 2.— Comparison of the annual march of pressures ratios and mean temperatures

of the air column at Droxel, Nebr.

the scatter of the dots is slightly greater, owin%,n.probably,
to the smaller number of observations upon which means
for this level are based.*

Annual variation of pressure ratios.—The barometric
pressure at any level, considered statically, is the weight
of the air above that level. This weight 1s a function of
the temperature of the air between the earth’s surface
and the level in question, and temperature, whether at
some given level in the atmosphere or the average of an
air coﬁmm of stated length, is subject to an annual vari-
ation. . It is not surprising, therefore, that the annual
march of pressure ratios, at least. at levels within the
range of our interest, is represented by a curve which is
quite similar to that of the annual march of mean air-
column temperature.

Figure 2 shows the annual march of the several pres-
sure ratios shown in Figure 1, together with the annual

3 It will be recalled that the method for obtaining pressures at 1 and 2 kilometers above
mflevel makes use only of current pressure, temperature, and wind direction a¢ the
surjace.

© All averages of free-air conditions used in this paper have been taken {from ‘“An
acrological survey of the United States: Part I. Results of observations by means of
kites,” by W. R. Gregg. Mo. WEATHER REV. SUPPLEMENT No. 20, Washington, 1922,
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march of the mean temperature of the air column perti-
nent to the particular pressure ratios. The intimate
relation that exists between the several curves illustrates
clearly the functional relation between temperature and
free-air pressure. It will be remembered that in the
central and eastern United States the annual march of
barometric pressure at the surface is characterized by a
minimum in late spring or early summer and a maximum
in early winter, characteristics that do not appear either
in the annual march of temperature or in the annual
march of pressure ratios.

Having considered the monthly mean pressures thus
briefly, one’s curiosity is whetted by the rather aston-
ishing fact that data which are ordinarily so accurately
represented by the exponential law should now appear in
linear guise. What is the true nature of this curve
which expresses the relation between p./ps and p,/p,?
The answer to this question can be most readily obtained
from theory.

THEORETICAL RELATIONS.

The slope of the curve y=f(z).—The hypsometric
relation, the fundamental law in all considerations of this
character, may be stated as follows:

~Z,
Ps=Ps XP T i of) """ - --(2)

in which p, and p, are the barometric pressures at some
level in the atmosphere and at the surface, respectively;
Z, is the vertical distance between the point where p, is
measured and the level for which p, is to be determined,
generally known as the length of the air column; K is a
constant; « is the coefficient of gas expansion; and 4, is
the virtual mean temperature of the air column.

Since we are interested in the ratio of pressure at
some high level to the pressure at the surface, let

Y = Ds/Ds-

Upon substituting the expression for p, contained in
(2? it is found that

-Z,
Y=XP T +aby"

While, in ordinary practice, one is interested in some par-
ticular level, in which case Z; would be a parameter, it is
best here to consider both 8, and Z, as variables. Hence,
differentiating, one obtains:

~Zy \Zmedt,—(1+08,)dZ,
dy=(°xP K1+ af)/)  EK(+abyp)?

Again, let pn and p, represent the barometric pressure
at two other levels in the atmosphere, and let
= pm/ P
Fronr (2), as before, it is known that,

---- @

- Zm—n
P ™ Pa 3P BT+ ofm o)
whence,
— Zm—n
=8P K0+ ofnn)

Since it is desired to allow the stratum of atmosphere
between the bounding surfaces of which Z,_, lies to
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remain fixed regardless of the variations of Z,, Zy_,
may be properly regarded as a parameter, and dif-
ferentiation will yield the equation,

Zm—n o -7 m~n

@2~ FT ¥ ata)® P KT+ atpy) Pon-se ===~ @

Dividing (3) by (4) one obtains the slope of the curve
representing the relation between y and z:

dy Zm.—n(l +a0l) —Zl(l +aom—n)
Zx‘=("*"1’ " K +aby) (1+cfnr) )X

(14 0fm_n)?  Z.d0,— (1 +abdZ,)
Gta)? X Zpoina

ceeeee--(B)

In case it is desired to treat Z, as a parameter, the
equation (5) is simplified, (since dZ,=0) to

dy Zpn(1+afs) —Z5(1 +a9m_n)
d‘f(e"P E(1+a0) (1 + afia) )X

Zy(1 +afm_n)?,, d0
Zp o1+ ody)? X Wl (5a)

It is clear from equations (5) and (5a) that the curve
representative of the relation between z and y can not be
a straight line, as was at first suspected, but a curve whose
slope 1s an exponential function involving the length
a.ns the mean temperature of the two air columns. If
the original function were linear, the first differential
would, of course, be a constant. The conclusion must be
that within the limits of variation of the several variables
in these equations, the variation of dy/dz is perhaps small
enough to be negligible. This may be investigated by
means of reasonable substitutions in these equations.
There occurs, moreover, in these equations, the term
db,/dd,,_n, which one may interpret as the change of the
mean temperature of the air column of length Z, relative
to the mean temperature of the air column of length
Zw_n. Since temperature varies so irregularly with
altitude and time, it is obvious that the value of df;/dm »
must vary almost incessantly in a most irregular manner.
If the value of Z, _, is chosen to be 1,000 meters (3,281
feet) and 6,_, the mean temperature of this stratum
which lies between 1,000 and 2,000 meters above sea level
(3,281 to 5,562 feet), it seems reasonable that, for stations
in the central and eastern United States, this stratum
would occupy a relatively intermediate position in the
stratum between the surface and some high level such as
3, 4, or 5 kilometers (9,842, 13,123, and 16,404 feet) above
sea level. One should expect that temperature changes
within the stratum (m-n) would proceed at about the
same rate as within a stratum extending from the surface
to, say, 3 kilometers above sea level %13,123 feet), and
that, on the averaie:, thely would be relatively more
rapid as higher and hi Eher evels are considered as upper
boundaries to-the thicker air stratum. If, therefore, one
wishes to assume a value for the fraction df,/dfy_n, it
would appear that for the 3-kilometer level (9,482-foot)
the value 0.90 is appropriate, for the 4-kilometer level
(13,123-foot) the value 0.80, and for the 5-kilometer level
(16,404-foot) the value 0.65. (Attention isinvited to the
fact that the arbitrary assumption of a numerical value
of d6,/dfm_n, while perhaps not serving to compute strictly
accurate values of dy/dz, will not operate to influence the
form of the curve.) Making the appropriate assumptions
as to temperature, table 1 contains the results of com-
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utation from equation (5a) of values of dy/dz for several
engths of air column.

TaBLE 1.—Values of dy/dz computed from equation (5a) for various tem-
peratures and lengths of air column and assumed values of d6,[db,,.

Assumed mean temperature of air column (°C.). Length of air column (meters).

%} 6 04 3 3,000 4,000 5,000
- T, -23 -25 -27 2. 069 2.164 1,837
L 2 0 -2 2.136 2.260 2.045
30 ccarieinrrenranans 2 25 23 2.190 2.310 2.141

It is seen that the values of dy/dx are very close to
2.000 and that the variation is not great. This may be
seen more clearly if one examines the actual variation
of angle of slope of the line representing the relation
between z and y. For any given level the slope in-
creases with increase of temperature, hence the difference
between the angles of slope corresponding to the ex-
tremes of temperature will indicate the degree of curva-
ture likely to be encountered in the curve of the orig-
inal function. These angles and their differences appear
in Table 2.

TaBLE 2.—S8lopes of tangents to curve of y=F(z) at temperature extremes,
and their differences.

(X
(.b_) Slope of tangent.
' 3,000 4,000 5,000
meters. meters. meters.
o [ a [ L] ’
61 12| 6> 12| 62 42
65 28| 66 51 64 58
1167 1 39 3 16

It can be seen at once that the difference between a
straight line and a portion of a curve the maximum
curvature of which would produce an angle of the order
of 2° between tangents at its extremes is negligible.
Figure 3 shows the relation between dy/dr and 6,., for
the three levels. On the left-hand scale are values of
dy/dx and on the right-hand scale are angles of slope.®

The conclusion to be drawn from these considerations
is that within the limits of natural variation of the mean
temperature of the air columns involved, the relation be-
tween P./P, and Pyn/P, 18 practically linear, when these
pressures occur within the lowest 5 kilometers of the aimos-
ghere; and, therefore, that an equation of that form may

e employed for the computation of one of the pressures
when the remaining three are known. For convenience,
this may be referred to as the Law of Pressure Ratios.

OBSERVATIONAL DATA.

Nature of the data.—The data employed in this.study
were obtained from the original records on file in the
Aerological Division of the Weather Bureau. They in-
clude observations made at each of the aerological sta-
tions which have been, or are being, operated by the
Weather Bureau.

% The apparently nonuniform change of the values of dy/dz with chango of Z, s chiefly
the result of the value of d84/d0,.2 chosen for the several levels. If it were not for the
assumed deerease of d0,/d-2 with increase of elevation, the several curves in figures
3 should lie one above another in the order of the level for which they are characteristie.
But since this factor {s assumed to decrease with ¢levation, the 5-km. curve and the
3-km. curve both lie below the 4-km. curve. Since the law of variation of d6,/d0;.s with
Zr. élsx n;)t known, it is not possible at this stage of the paper to verify the assumed values
of the factor.
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In order to render the results of this paper comparable
with those of previous investigations on kindred phases
of this subject, all the observations selected were made
at approximately 8 a. m., 75th meridian time. Certain
corrections, devised to yield pressure values which prob-
ably would have been measured had it been possible to
make simultaneous observations at all levels, were em-
ployed. However, cases in which the surface pressure
was changing rapidly during the kite flight were not used
owing to the unreliability of extrapolating the pressures
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F1a. 3.—Relation between the mean temperature of the stratum of 1 kilometer thickness
and the slope of the curve y=f(z).

under such conditions. In other words, the pressure
values from which ratios were formed are believed to be
truly representative of simultaneous pressure conditions
at all levels.

Having secured these data, ratios were formed between
the pressures at 1 and 2 kilometers (3,281 and 6,562 feet)
above sea level (z=p,/p,), and between pressures at the
surface and some selected higher level (y=p./p,). The
higher levels thus selected were 3, 4, and 5 kilometers
(9,842, 13,123, and 16,404 feet) above sea level, and, for
each station, the investigation was carried as high as the
amount of data justified.

Number of observations.—Table 3 gives the number of
observations upon which the results of the portion of the
paper employing current observations are based.

TaBLE 3.—Number of observations upon which resulis of current observa-
tions are based.

‘With reference to level—

Btation.

3 km. above[4 km. above|5 km. above
m.s. 1.

m.s.l. m,s. L.

These figures do not represent all available data in cer-
tain cases, especially with reference to the 3-kilometer
level, but it is believed that they were sufficiently numer-
ous to show accurately the relationships involved. This
fact was obvious when the data were plotted in the form
of dot charts. It is true, however, in the case of the
5-kilometer level that there were too few observations at
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most stations, and for that reason only Drexel and Mount
Weather were used.

It is obviously unnecessary to reproduce all the dot
charts. One is given in Figure 4, in order that the
reader may see a typical example of the manner in which
the observations distribute themselves. This type of dis-
tribution is characteristic of all stations and aﬁgevels.

Values of the constant o dfor aerological stations.—Hav-
ing the data thus prepared and plotted, the line of good
fit to the data—assuming, as was shown to be justified
in the previous section, that a straight line adequately
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Fia. 4.—Distribution of individual observations about a line of good fit.
Royal Center, Ind.

Data from

represents the relationship between z and y—was deter-
mined by the ordinary method of least squares. This
involves the evaluation of the two constants in the linear
equation

y=az+b,

in which z and y have the same significance as in the
previous section, namely, z=p,/p, and y = ps/ps.

The values of the constant @, where a=dy/dz, the
slope of the line, were determined by the equation com-
mon in statistical procedure:
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n(Sey) — (2x)(Zy)
n(Zzx?) — (S2)3

in which n is the number of observations.
tains the values of this constant.

a=dy/dz=

Table 4 con-

TaBLe 4.— Values of the constanl a, delermined by the method of least

squares.
‘With refercnce tolovel—

Statlon. 3 km. 4 km. 5 km

above above above

m.s.l. m.s.l m.s.1
Ellendale, N. Dak........c.ciivimininiiinnnnne, 2. 003 2.263 |.oueiusnnn
T PP 1.916 2,336 1.994
Broken Arrow, Okla b7 {: N DR PR,
Groesbeck, Tex..... 2.425 2.887 I.oeoennnnnn
Royal Center, Ind . 2.025 2.238 |..covinieoan
Mount Weather, Va. . 1,935 2.206 1.879
Due West, 8.C......ooiviiiiinnnnnn. 1,928 213 |...oee.....
Leesburg, Ga l 2710 |veerrcnenne]onmnaarannns

Values of the constant b for aerological stations.—The
values of the second constant in the linear equation were
determined by means of the following equation:

b_y—a(z'.t)
T n

in which the values of ¢ were those contained in Table 4.
The following table contains the resulting values of .

TABLE 5.— Values of thc; conslant b, determined by the method of least

squarcs.
With reference tolevel—

Statton. . 3km, 4Xm, 5km.

i above above above

! m. s.1. m.s. 1. m.s. 1
Ellendale, N. Dak......oovueniiiniennneaenenna, ! —1.8504 {.cueu......
Drexel, Nebr............c........ | —L4zr5 | Cil20i6
Broken Arrow, Okla | —=1.0357 |.ceoenrntfenevacnnanns
Groesbeck, Tex. —=1.9161 |............
Royal Center, Ind................. —1.3532 |............
Mount Weather, Va. - gﬁ% —1.0911

Due West, 8.C
Leesburg, G

Probable errors of single computations by the linear
equation.—With the constants thus determined it is pos-
sible to form equations, characteristic of the various
levels and several aerological stations, and to compute,
using the original observed values of p,, p,, and p,,
values of p,. In this way, values of the probable error
of a single computation were derived, and these values
are contained in Table 6. The equation for probable
error was the one customarily used:

r= +.6745 /Z¥/(n-1)

in which v is the difference between a computed and an
observed value of p,.
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TaBLE 6.—Values of the ].urobable error of a single computation of
pressure at stated free-vir levels based wpon empirical equations derived

above. (Inches).
With reference to level—

Statlon. 3 Jm, 4 ¥m. 5km.

above above above

m.s. L. m.s. 1. m.s. 1
Ellendale, N. DaK..oveeeruennincecencnenanaranaes +0.027 +0.050 |............
Dreel, NODE.o«,.orvmnsusoessssee e e ssieoos 0.038 |  0.047 20,052
Broken Arrow, OKIg....cieevennniiiiieninnann. D032 [eeeemnserenalonenanannnns
GroeSheCk, TeX.evecmmceressecrncnansaenannnsanas 40.041 +0.042 {............
Royal Center, Ind..___. ... ... ............. +£0.030 +0.041 ... .........
Mount Weather, Va.. +0.027 +0.038 +0.054
Due West, 8. C.oeriiiiiiicica i cacieaan, +0.034 +0.039 |...oniienn..
Leesbhirs, Go.. et i PO N 7 N VR,
B3 LY +0.033 =+0.043 +0.053

. The probable error of a.—From equation (1) it follows,
if ps, P, and p,, are regarded as free from error, that

. dpa= (psp,da/p,) + padb - - _ .. .. ..(6)

But since
p= (ZY) —a(Zz)
n
db=—Cx)da/n - .. ............(T)
whence,
dpz= (psp.da/p,) — pd (Zz)da/n]
= [(pspa/Py) — Ps(Z7) [n)da

and

da=dp./[(Psp./P) ~ Ds(Z2)/]- - .. ..(8)

Now, one of the laws of the propagation of error states
that ® if Z= Az, in which A is a constant, then,

R=Ar

in which R is the probable error of Z and r is the probable
error of z. It will be seen that this equation is of the
same form as (8).

Since it is desired only to obtain an idea of the order of
magnitude of the error in a, and since @ is to be used
without respect to season, it is possible to substitute for
dp, the average probable error for the several levels con-
tained in the last line of table 6, mean annual values of
Psy Py, and p, for a representative station, and repre-
sentative values of =x/n obtained from the computation
sheets. In this way we may regard da as the probable
error of a, and it proves to be, on the average,

3-km. level, +0.0012.
for the {4-km. level, +0.0016.
5-km. level, +0.0020.

Thus, since nearly all the values of a are very close to
2.000, it is seen that the values as stated to three decimal
places in Table 4 are justified.

¢ Merriman, Mansfleld: Method of least squares. New York, 1915, p. 77.
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The probable error of b.—Having the above values for a,
it is now a simple mafter to substitute in equation (7) and
con}l’pute the probable error of . These values prove
to be:

3-km. level, 4 0.000008.
for the {4-km. level, +0.000010.
5-km. level, 40.000013.

Conclugions concerning probable errors.—An interesting
and highly pertinent fact becomes apparent upon con-
gideration ofp the probable errors shown above: The large
probable errors occur in the less significant member of
this pair of constants. For example: When the angle of
slope is close to 60°, as is the case here, a variation of one
unit in the second decimal Place of @ implies a difference
of slope of only about 7’. This is negligibly small.
But a very slight variation in the value of  means that
every ordinate will be in error by just that amount; or,
to consider it geometrically, the entire line which repre-
sents the relation between z and y will be shifted parallel
to itself by the amount of the error. These facts are
important in attempting to carry over to the nonaero-
logical stations the determination of these constants.

Another method of determining b.—The foregoing dis-
cussion has been built wholly upon the groups of current
kite observations selected to represent the various levels
and stations. The reliability of the values of the con-
stants obtained by least-square analysis is deperdent
upon how closely the selected observations, taken in the
aggregate, represent any observation that has been or
will be made at a given station with respect to a given
level. In other words, how closely does the mean of a
given group of observations resemble the annual mean
of the same elements based upon all the observations
that are available, when the annual mean is also repre-
sentative of conditions at 8 a. m., 75th meridian time?

It is evident that the graphical representation of the
relation between z and y, should be a line passing through
the annual mean corresponding to the same time of day.

It is stated by Mr. V&P R. Gregg 7 that —

* # % The a.veraqe time of the kite flights is such that the mean
values of the meteorological elements at the surface are very nearly
the same as the 24-hour averages. The differences are, in general, 8o
small that it is deemed unnecessary to publish them in detail * * *,

Now, from Bigelow,® it is possible to obtain figures for
correcting the 24-hour mean (annual) to the 8 a. m.
mean (annual) and the corrected means are given in the
following table. The corrections given by Bigelow are,
of course, for the surface only, but since from (2),

—2Zy
dp.= exp "mm dp.

we can compute quite satisfactory values of the cor-
rection to be applied for the higher levels, we may
reduce all the annual means for 24 hours to the annual
means for 8 a. m.

10p.cit., . 3.

8 Bigoelow, Frank H.: Re on the barometry of the United States, Canada, and the
Fat Yadies' “Report of (el Chiel of the Weatter ﬁureau, 1900-1901, Table 27, pp. 140-
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TABLE 7.—Annual mean pressures at the surface and several free-air

levels. (8 a. m.) (mb.).

Station. Surface. | 1km. 2 km. 3 km. 4 km, 5 km.
Ellendale, N. Dak...... 963.3 809.5 795.2 701. 4 617.3 5417
Drexel, N,ebr ........... 969. 5 901.0 797.7 704.7 621, 4 546.9
Broken Arrow, Okla.... 989.7 903. 4 1.5 709. 4 627.0 551.6
Groesbeck, Tex......... 1,000.7 904.5 £03.2 1.7 629.0 554.3
Royal Center. Ind...... 991, 4 902, 8 798.8 705.6 6217 546.5
Mount Weather, Va.... 956.3 903.1 79¢.2 705.7 621.7 545.7
Due West, S.C......... 994.3 905. 4 £02.6 710.2 627.0 {..........
Leesturg, Ga........... 1,000.4 908.7 §04.6 712.9 630.4 5540

From these data it is possible to derive values of z,
g

(p:/py), and y, (p./ps). and the values of these ratios are
given in Table 8.

TaBLE 8.— FPalues of z and y for the annual mean at various aerological
stations and for various levels.

Station. pilp PilDs PDs pslpa
Ellendale, N. Dak...cocceeennanicnannnnnnss 0, 8/40 0. 7281 0. 8408 0. 5623
Drexel, Nebr.....uiveeianaveerancnncnsenanas 0. 8853 0.7269 0.6409 0. 5641
Broken Arrow, Okla.......ccoeeerenennannns 0.8872 0.716% 0. 6333 0.5573
Qroesheck, TOX...ucuuuereaersnnercncrannnens 0. BNSO 0.7112 0. 6236 0. 5339
Royal Center, Ind. .......ccocciiniainioanae. 0, KR4% 0.7117 0.6271 0. 5512
Mount Weather, Va......cccovviniicannannn 0. £349 0.7379 0. 6501 0.5708
Due West, 8. C.oeonniiiiaiiiicieiieieanees 0. $%65 0.7143 0.6308 |..........
Leesburg, G8......ovoiiiiicreincnsncananans 0. 8874 0. 7063 0.6245 0. 5488

Now, from equation (1) we know that

b=y—az=pi/pa—ap,/p, ----------..(18)

from which it is possible, using values of a contained in
Table 4 and of x# and y contained in Table 8, to compute
a new value of b. The graphical significance of this new
value is that it is the y-intercept of a line having the same
slope as that derived by least-square analysis, but passing
through the point representative of the annual means
contamed in Table 7. Table 9 contains both the new
value of b thus computed and the difference between this
value and the corresponding value contained in Table 5.

TABLE 9.—Values of b for the relation y=f(x) characterisiic of the
annual mean.

Station. by Diff.1 by

—1.3597
—1.4272

1 Value of b in Table 9 minus value in Table 5.

The differences are, in all cases, quite small; but since
the values determined by each method have characteristic
merits, it is thought that a mean of the two methods
should give a value of greater reliability than either consid-
ered separately. Consequently, such a mean was formed
in each case. The final values of & thus determined
appear in Table 10. But before presenting them, there



SepTEMEBER, 1923.

is the further consideration of the correct value of a to
accompany the new values of b. It is clear that if the
mean value of b differs from the value determined by the
second method, a line passing through the mean By will
not pass exactly throulgh the point representing the annual
mean of the ratios. In order to ma.lge it do tﬁis, it would
be necessary to vary e slightly. This can be done by
means of the equation

=22t o [(pup) =BUips- - . - .. ..(1D)

also derived from equation (1). Substitutions have been
made in this e?iuatlon, and the results, which may be
regarded as the final values of @ dnd b appear in Table 10.

TaBLE 10.—Final values of a and b for the various aerological stations.

With respeet to level—
Station. 3 km, aboves. 1. 4 km. above s. 1. 5 km. aboves. 1.
[ b [] b a b
Ellendale............... 2,003 | —~1.0424 2.263 | =~1.8595 |.eencneace]ennanroaes
Drexel......cccceeen-.n 1,916 | —0.9694 2,336 | —1.4273 1,994 | —1.2014
1,876 | —1.0360 |..coemoenncaccaec]onnnicneenfimmannnaas
2.424 | —1,4418 2,866 | —1.9167 |...ccveeenfovencnnnn-
2.025 | —1,0802 2.238 § —1.3531 | ......odemeanian..
1,935 | —0.9744 2,206 | —1.3022 1.878 | —1.0916
1.928 | —0.9947 2,113 | —1.2426 |.. .. ocifeecacnnnss
2.710 | —1.6986 [...cccvce]eriacnancc]orennsnnnafeacaraanns

It is seen, when Tables 4 and 10 are compared, that
there is very little difference between the values of a
derived by the two methods. This indicates that the
bodies of data which were treated by the method of
least squares were truly representative of mean conditions.

Errors of computation attributable to errors of z.—
Hitherto, in this paper, it was assumed that the values
of z, i. e., p,/p,, were free from error. But, in Elract-ice,
when use is made of pressures at these levels which are,
themselves, the results of computation, it is clear that
error must be introduced into the final result by the
inaccuracies of the components of the value of z. The
investigation of the accuracy of the method of obtaining
p, and p, was referred to earlier ® in this paper. From
that investigation it is possible to obtain certain facts
which will be useful here. For example:

(1) Errors in p, and p,, if relatively large, were usually
of the same algebraic sign.

(2) Errors of p, were usually about twice those of p,.

(8) About 90 per cent of the errors of p, were less
than 0.05 inch (1.69 mb.) and an equal percentage of
errors of p, were less than 0.11 inch (3.73 mb.).

If p, is considered free from error (it is probably the
most precise of all meteorological measurements), and if
e is regarded as subject to such small errors as are
indicated by the probable errors discussed earlier (the
error of b is probably ne%lligibly small), we may derive
from equation (1) the following expression from which
the degree of error to be expected in p, may be computed:

dps = pul (1, p:da + pradp, — p.adp) [p)7] - - -- - (9)
Let, for example, p, be 950 mb.; p,, 900 mb.; p,, 800

mb.; and let @ be 2.000; da, .001; dp,, —1.5 mb.; dp,, ~3.5
mb.; and these, when substituted in the above equation

give .
dp,=-3.7 mb. (0.11 inch).

8 Bes footnote 3, p. 437.
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If the above figures are again the same except for dp,
and dp, which may be assumed to be small and of opposite
sign, as for example, 0.5 mb., and —0.5 mb., respectively,

we have,
dp:=-1.1 mb. (-0.03 inch).
If the algebraic signs of these errors are reversed,
dp,=2.7 mb. (0.08 inch).

These results are sufficient to indicate the order of
magnitude of the errors to be expected in computations
of p,. It is seen at once that, regardless of the level to
which the compulations refer, the accuracy is just about as
satisfactory at the high level as at the 2 km. level. This is a
fact which lends considerable importance to the law of
pressure ratios as an effective means of computing pres-
sures at higher levels.

Before undertaking the task of determining the con-
stants of the linear equations for nonaerological stations,
it will be of interest to compute a few pressures for these
high levels at the aerological stations, using values of
P, and p, that have been computed from surface condi-
tions alone, and to compare the results with pressures
measured by means of kites at those levels. This can
be done very readily by referring to kite flights made
during the period December 1, 1922, to February 28,
1923, during which time these free-air reductions were
performed by a group of stations in the central and
eastern United States in connection with a test of the
efficacy of the method of computation. The Aerological
Division has suI:f)lied the data, and Table 11 contains the
comparisons and residual errors.

TABLE 11.—Comparison for various aerological stations of pressures
observed by means of kites, and pressures compulted blunthe law of pressure
;ati{ln, employing compuled pressures at 1 and 2 kilometers above seu
evel.

Pressure at—
3-kilometer level. 4-kilometer level.
Btation. Date.
Ob- Com- Difference. Ob- Com- Difference.
serve uted served | puted
(mb.) mb.). Mb. | In. (mb.). | (mb.). Mb. | .
1922,
El};;lihle, N. Dle‘t;23 1 693. 4 691.8; +1.6/40.05] 60S.0| 605. 6] 42 4/40.07
: Jan. ‘7 685. 7, 686.9 —1.2|— .03 601.6) 602.2; —0.68/— .02
Jan. 12 697.7 807.7 0| .00 613.4 611.5 +1.9(+ .08
Jan. 17 604.3 606.01 —1,7|— .05 611.4 614.5 —3.1]—
Feb., 24 695. 0 608, 2t —3.2/— .10| 609.9 613.68] —3.7|— .11
Feb. 25 601. 0| 601.0f 0.0 .00 607.2 605.3| +1.9|+ .06
1922,
Drexel, Nebr..| Dec. 22 698. 7] 608.1| +0.6/4 .02 616.1 615.2[ +40.9|4 .03
Dee. 25 697.1 698,7| —1.6/— .05 614.5 615. 8| ~1.3|— .04
Dec. 28 899. 6] 702. 1) —2.5(— .07 614.9 618.2; —3.3— .10
1923,
Jan. 25 808.1 696.3] +1.84 .05[ 614.5) 611.7| 4-2.8/4- .08
Feb. 5 702.7| 701.1} 41.6|4- .05f 618.2 615.0] +3.2|+ .10
1922,
Broken Arrow,| Dec. 19 708.7| 700.5| —0.8(— .02...ccuuuloeccranncfenceaafuanaan
Okla. Dee. 21 705. 4 07,1 =L 7= e05].cccecei]enanmacc]iencn]uonnss
1
Jan. 11 699.2] 703.8] —4.1]— 12 ..l eiiinnii]enei]ennaan
Jan, 19 710. 7| 3.5 =2 81— 08/.cvuenrc]eacmencaatencnc]ocannn
1922,
Groesbeck,| Dec. 6| 7158  715.3f +0.5+ .01 633.4 632.6! 4-0.8(+ .02
Tex. Dec. 31 701. 6| 701.5] 0.0 .00( 617.6 617.5 +0.1] .00
1623,
Jan. 23 701.6f 704.9] ~3.3|— .10 616.0 622.4/ —6.4|— .19
Feb. 23| 7040 700.4| —5.4{— .16 619.0f 625.4) —6.4|— .19
1022,
Rmcenter, Dec. 24 | 690.1 090.9] —0.8/— .02| 614.9| 613.5 +1.4|+ .04
1923, '
Duc.a West, 8. | Jan. 23| 700. 712.1; —-3.1/— .10 0251 638.7) —3.6}— .11
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This table is self-explanatory and calls for very little
comment. The number of cases is so small that no
attempt will be made to treat the rgsiduals statistically.
The object is rather to show the general magnitude of
the departures of the computed pressures from the
observed. This, it will be seen, is about the same as
for the 2-kilometer level, even at the 4-kilometer level.
The reader, if he is familiar with the discussion of the
accuracy of the 1 and 2 kilometer maps, will recall that
one of the difficulties of using aerological stations in
combination with nonaerological stations for making
the isobaric maps was that the surface temperature at
the former was often too low relatively owing to the
exposure of thermometers so near the ground. This
had its reflection in pressures at 1 and 2 kilometers that
were likewise low. In a like manner, pressures at these
two levels, which are themselves too low, will produce
similar results in the pressure at 3 or 4 kilometers. It
is gratifying to note, however, that, even in cases where
the error at 1 and 2 kilometers was rather large, the
error at the high levels was not any greater than that at
2 kilometers. This indicates that Er we accept the 2-
kilometer map as correctly indicative of barometric con-
ditions at that level, we must also accept the 4-kilometer
chart, for it is possessed of no greater error.

THE DETERMINATION OF CONSTANTS FOR NONAEROLOGICAL
STATIONS.

The constant a.—It was learned from equation (5) that
the value of dy/dz, or a, is a function of the mean tem-
peratures of the two air columns, one extending from
the surface to the highest level under consideration, and
the other from the 1 to the 2 kilometer level, when Z,
is regarded as a parameter. It is obvious that one
means of a%pproaching the problem of the determina-
tion of a for interlying nonaerological stations is to
determine for each aerological station and each level the
numerical value of the differential coefficient df,/df,—,.
This value could then be reduced to correspond to air
columns of uniform length at the various stations, which
would eliminate the factor Z, and leave the differential
term subject to temperature alone, which is a variable
having a marked geog’raphic distribution. Thus the
values of db,/df,—, could be plotted geographically and
interpolations made for the nonaerological stations.
Thence bv a process which is the reverse of that men-
tioned above for obtaining values corresponding to
uniform lengths of air column, the value could be deter-
mined for the length of air column characteristic of cach
station. Finally, by the substitution of proper values
for the temperatures, the value of dy/dx for nonaero-
loﬂfal stations could be computed. Such a process,
while it possesses the merit of permitting a to be com-

ted, is indirect. There is a shorter method which is,

owever, akin to that sketched above.

This second 1P1an is to deal directly with the values
contained in Table 10. As was stated above, these
values are dependent upon several factors—the mean
temperatures of two air columns, and the lengths of
two air columns. The temperature terms have a geo-
graphical distribution, but the length of the long air
column Z, is characteristic of each station. In order to
make the values of @, empirically derived, as was shown
above, comparable with one another, one must first
eliminate the effect of the different characteristic values
of Z, at the various stations. This may be done
graphically.

one Zlots the value of ¢ as an ordinate, and the
~value of Z, as an abcissa, one obtains a curve showing
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the relation between these two factors. When such a
curve is plotted for each aerological station, it is possible
to take from the graph a value of g which would corre-
spond to any desired length of air column at any sta-
tion. Thus, for each station, have been taken from the
curves in Figure 5, a series of values of ¢ between 2,750
and 4,000 meters. This gives, for a given length of air
column, values of @ for each station corresponding to
exactly the same length of air column. In other words,
the values of a are those which would have come from
the least square analysis had a uniform length of air
column been used at each station instead of certain levels
above sea level. In Figure 5, the values of a are given
on the left-hand scale of ordinates; the corresponding
angle of inclination of the straight line appears on the
ritg t-hand scale of ordinates. The scale at the bottom
of the ﬂﬁure shows the length of air column in meters,
and at the top in feet.

Length of air column (feet)

o o o ] o o o
(] (=] [&] (=] (=]
8 28¢5 8 ¢ 8 §
PR RSP P S 1 1 ! i 1
- 720
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Length of air column (meters)

F1G. 5.—Relation between the slope of the line y=/(z) and the length of air column for
the several kite stations.

TaBLE 12.— Values of a obtained graphically for uniform lengths of air
column at the various acrological stations.

Length of air column (meters).
Station,
2,750 3,000 3,500 4,000
Ellendale, N.Dak.......ccccocoiiiimannnnnn 2.085 2.171 2.282 2.217
Drexel, NebT . ....o0vvonvonesensonssonseneens 2.033| 2.185] 2.3% 2.287
Broken Arrow, Okla............ccccecenannnn 1.960 2.120 2.275 2. 247
Groesbeck, TeX.....c.oecmenmmvranncnannnnne- 2.358 2. 581 2.813 2. 861
Royal Center, Ind.... 2,015 2.108 2.220 2.214
Mount Weather, V8. ....cccvvmvemiaaineenn. 2.088 2.184 2.260 2,160
Due West, 8. C...ovnvnnimiiniacnicanmnnes 1.915 2.001 2.105 2.084
Leesburg, Ga....ccoceriicaccnacanennennes 25831 2760 2,961 2.995
1

. These data, being subject only to-geographical-varia-
tion, may be plotted upon maps and lines of equal value
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F16. 8,—Geograpbical distribution of the slope of the line y=f(r).

of @ may be drawn. Figure 6 contains four maps, one
for each column in Table 12. The length of air column
to which it refers appears in the lower left-hand corner.

Peculiarities of the geographical distribution of a.—The
astonishing apparition upon these charts of a region of
low value of @ through the middle latitudes of eastern
United States, accompanied by a steep horizontal
gradient to the south and a slight gradient to the north,
18 the just cause for serious meditation. One can con-
sider the slope of the line y=f(z) as a function either of
mean temperatures of the two air columns or of four

ressures occurrin% at the ends of these columns. But

owever one may look at it, there is difficulty in seeing
why dy/dz should, as one fElro es from north to south,
first decrease slowly and finally increase rapidly. If we

consider temperature, we have an element which has a
pronounced geographical distribution, from low in the
north to high in the south, not only at the surface but at
free-air levels also. The effect of such a regular gradient
would be to produce an increasing value of the slope with
decrease of latitude in this re%on. Again, with refer-
ence to pressure, it is found that considering monthly
mean pressures the intensity of the south-to-north hor-
zontal gradient in the free air increases with elevation,
while it is very slight at the surface. The gradients at
1 to 2 kilometers above sea level lie at intermediate posi-
tions between the surface and the high level under con-
sideration. Consequently, when ratios are formed the

also increase regularly from north to south and the resuﬂ,
is the same as under the consideration of temperature.
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We have reason to believe, as was shown earlier, that the
values of a derived ‘by least-square analysis are correct
physically, and they have been submitted to careful
arithmetical check to verify the computations.

Upon what may we place the responsibility for this
surprising characteristic of the charts? In the equation
for dy/dx attention was called to the term d9/d0m -, the
relative change of the mean temperatures of the two air
columns. This ratio occupies a highly strategic position
in the equation, since all terms are mu]tiplieg by it. It
is altogether possible that the evaluation of this term
from the diurnal variation of temperature at the several
stations would afford a complete and adequate explana-
tion of the phenomenon. But, at this time, data on the
diurnal variation of temperature have not been worked
up into final form, and such explanations as might be
given would, of necessity, be based upon assumptions as
to the nature of the diurnal march at the various levels.
%it l()iloes not appear that such procedure would be justi-

able.

The explanation of the horizontal distribution of the
values of dy/dz must, therefore, await the time when data
are available. The problem is one which must ultimately
be discussed, yet which is not decidedly pertinent to the
present paper.

Values _}t)z-r nonaerological stations.—Upon the basis of
the four charts in Figure 6, one may ta[?ula.te the values
of a corresponding to air columns of the several lengths
indicated by the column headsin Table 12. Replatting
these values, one may take from the new curves values of
a corresponding to lengths of air column characteristic
of the particular nonaerological station.

Since the data for the 5-kilometer level were not nu-
merous, it has been thought best not to push too far the
possibilities of map construction at levels above 4 kilo-
meters. For this reason Table 13 contains only the values
of a for the levels 3 and 4 kilometers above sea level for a
selected list of stations at which it is desired to employ
upper-air reductions.

TaBLE 13.— Values of a for various nonaerological stations.

‘With reference ! With reference
tolevel— ; al—
Statiori. f : i Statlon. 1

3km. | 4km. | 3km, | 4km

above | above : above | above

m.s. k.| m.s.], i m.s.l.|m,s,]
Burlington, Vt.......... 2.535 2.684 i Abilend, ToX............ 2.000 2.778
Boston, Mass............ 2.563 2,581 1| Oklahoma City, Okla.. . 1913 2.517
New York, N. Y .| 2.351] 2.462 ! Omaha, Nebr... . 1957 | 2.3m
Pittsburgh, Pa. 2,081 2. 280) i Littlo Rock, Ark L2008 2,337
‘Washington, D, 2. 190 2.199 ;I St. Lows, Mn........... . 2.051
Norlolk, Va.... 2. 250 2.213 i Moorhead, Minn. 2,076 2, 247
Wilmington. N, C....... 2.291 2.294 | Duluth, Minn._.......... 2,128 2,319
Charlesten, 8. C.........|] 2.534 2.628 || Madison, Wis...........} 2.090 2.278
Pensacola, Fla........... 2.789 3.008 :| Lansing, Mich... 2,143 2.370
Birmingham, Al R A1) § 2.472 || indanapolis. Ind 1. 905 2,110
Now Orleans, 1 2.779 {  3.008 || Nashvilly, Tenn. 1.795 1.949
Houston, Tox.. aees| 2.674 2.981 || Lexington, Ky.. .| 1.8%2 2,005
Palestine, Tex........... 2,438 2.840 (| Columbus, Ohio......... 1. 981 2. 185

The constant b.—While it is true that the value of the
slope a is of great importance in the determination of
free-air pressures, it has been shown that, for slopes of the
magnitude found in this study, the tangent changes at
such a rate that the variation of angle from one station to
another is really but slightly significant. The constant
b, however, is highly important, since it determines the ¥
intercept. Its variation produces significant vertical
displacements of the line y =f(z).

t was shown that by the use of equation (la) and
mean annual pressure values very accurate values of b
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could be computed. Comparison of values for the kite
stations was given in Table 9. It is likewise possible to
substitute mean annual pressure values characteristic of
the nonaerological stations in equation (1a) and values
of ¢ from Table 13, and thus derive a series of values of b.
The surface pressures used in Table 14 are taken from
Bigelow’s “Report on the barometry of the United
States, Canada, and the West Indies’ (see footnote 8),
except in a few cases of stations at which the altitude of
the barometer has been changed since 1900. The free-
air pressures have been interpolated from graphs in Sup-
lement 20 of the MontuLY WEATHER REVIEW (see
ootnote 4).

TaBLE 14.—Values of b for various nonaerological stations.

With reference With reference
to level— to level—
station. Station.

3km. { 4km, 3km, | 4km.

above | above above | above

m.s. 1. m.s. 1. m.s. 1. [m.s.L
Burlington, Vt.......... —1.5436!—1.7501 || Abilono, Tox.......c.ua. —1.0801)—-1. 8071
Boston, Mass. .. _..01.00 —1.5711|—1.6708 || Oklahama City, Okla....|—0. 9967|—1.58%
New York, N. Y. ..[—1.388|~-1.5621 || Omaha, Nebr......
Pittsburgh, Pa.... . .00 —11277|-1.3711 || Tittl Roek, Ark
Washington, D, 6,200 —1.2428-1.3334 || St. Louis, Mo.......0000 .
Norfolk, Va... «.[—1.3050{—1.3455 ]| Moorhead, Minn.........|—1.1202{—1.3572
Wilmington, N .o[—1.33231—1. 4170 || Puluth, Minn.. .vo|—1,1608/—1. 4346
Charlston, S, ..|—1.5476|—1. 7119 || Madison, Wis... ..-|{—1.1326|—1.3819
Puensacoln, Fla «—L7744|—2.050L {| Lansing, Mich.. --|—1.1836l—1. 4676
Birmingham, Al........[—1.2372|—1.5610 || Indianapnlis, Ind.. —0,9718(—1.2383
New Orleans, La_. ... —1.7658]—2. 0508 {[ Nashvilly, Tenn.._...... —0. 8810(—1. 1008
Touston, Tox. . ...... .[—1.6702—2.0245 || Loxington, Ky.._.......|—0.9127|—1.1420

Pul.sting, Tox.........00 —1.4520{—1. 8914 || Columbus, Ohio.. ... ZI..—l.ozzsi—Laa

Now, by means of Tables 13 and 14, it is possible to
form an equation characteristic of each station for each
of the two reduction levels. By means of these equa-
tions, the barometric pressure may be computed at each
of these levels. For example, the two equations for
Washington, D. C,, are:

For the 3-km.level. .. .. .............. P=p, [2.190 (%)—1.2428]
1

For the 4-km. level.. .. .............. P.=p, [2.199 (%')—1.3334]
1

On February 7, 1923, at 8 a. m., 75th meridian time,
the values of p,, p,, and p, were, respectively, 30.21
inches, 26.67 inches, and 23.47 inches. ~Substituting in
the above equations the pressures at 3 and 4 km. above
sca level are, respectively, 20.68 incheés and 18.18 inches.

Constants for plateau stations.-——The method of calcu-
latinz the values of the constants ¢ and b for stations in
the Plateau region of western United States affords an
interesting problem. This will be discussed in a later
paper in which there will also be presented a method for
obtaining pressures at 1 and 2 kilometers in that region.
The combination of the several methods will enable one
to prepare a free-air pressure chart for the entire United
States with the exception of the low-lying coastal regions
in the extreme West.

APPLICATION TO MAP DRAWING.

Comparison with observed winds.—Having the constants
for the various nonaerological stations, it is only a matter
of mechanical computing (which, in practice, can, of
course, be greatly facilitated by the use of tables) to
obtain pressures at 3-and 4 kilometers above sea level and
draw isobaric charts. To facilitate the preparation of a
few test charts, the Aerological Division has supplied free-
air wind data obtained by means of pilot baﬁoons for
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December 22-23, 1922, and January 16-17, 1923, all of
which dates lie within the period when the method for
obtaining pressures at 1 and 2 kilometers was being tested
by daily post card reporting.

The reduced pressures for these hi%il levels in general
distribute themselves smoothly, so that they are com-
parable in this respect with the charts for 1 and 2 kilo-
meters. It is not doubted that the accumulation of
data will render future revision of the constants desirable,
but this is a matter which does not affect the validity of
the method. Granting that slightly more smoothing
is required for these charts than is practiced upon the sea
level map, there is no mistaking the general trend of
horizontal pressure gradients which are the significant
and important factors in the determination of the move-
ment of air masses. Isobaric irregularities at these high
levels, are, it is believed, less significant than irregularities
of the same magnitude on the sea level map.

It has been pointed out before that tests of these maps
are very difficult, for one is never sure whether the records
of pilot balloon flights are truly representative of air
movement at the levels in question. This is not because
of inherent inaccuracies in the methods of observing and
reduction, but more probably because of the fickleness of
wind conditions comgined with the fact that the balloon
record represents only a momentary observation at any
particular level. We know that if the air is in adjust-
ment with the pressure gradient in the free air, it will
move nearly parallel to the isobars and with a velocity
inversely proportional to the distance between isobars.
When the wind direction is not parallel to the isobars, it
does not necessarily condemn the isobars, for it may be
that the air is not in perfect adjustment to the gradient,
or that there are local deviations in the gradient which
are so small as to escape record on the map. Local con-
vective influences may greatl)}" disturb the wind direc-
tion, yet be extremely local. Therefore, a lack of perfect
agreement is not completely attributable to faulty
isobars.

On the other hand, there is no desire to utilize this fact
as an alibi. The investigator is as curious as the reader
to know the true nature of the cause of such discrepancies
as may exist; but it is doubtful whether one will ever be
able definitely to establish an unimpeachable standard of
isobaric accuracy in the free air, owing to the difficulty
of simultaneous accessibility of a sufficiently large number
of points. One must, in all fairness, judge the results of
this map drawing in a broad way and attempt to compare
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large movements of air as indicated by simultaneous free-
air wind directions at aerological stations with general
isobaric trend. It is asking too much at this, and prob-
ably at any, stage of free-air map drawing to expect every
wind direction to agree with the isobaric trend in its
immediate vicinity. This does not always hold even at
the surface close to the reduction level, although in that
case we have recourse to turbulence, friction, and topog-
raphy to exgla,in the discrepancy; and such explanations
can not be drawn upon in such large measure in the free
air.

With these introductory remarks, Figure 7, showing
the pressures at sea level, 2, 3, and 4 ki%ometers for De-
cember 22-23, 1923, and January 16-17, 1922, respec-
tively, may be studied. On these charts are plotted the
wind directions observed by means of pilot balloons at
or near 8 a. m., 75th meridian time. These dates were
selected hecause of the large number of ascents reaching
the required altitudes. The speed of the wind in miles

er hour is indicated by the barbs on the arrows, one barb
indicating 10 miles of wind per hour.

These charts are offered in the hope that the reader will
study them and draw his own conclusions as to the agree-
ment between wind direction and isobaric trend, and the
relation between the barometric configurations at the
several levels. It is recognized that the number of maps
is small, but available time and space hardly justify the
presentation of more. No attempt is made to discuss the
thsical relations between wind conditions at the several
evels, since the object of this paper is to treat only of the
method of reduction and its application to map drawing.
It will be conceded, it is hoped, that the Law of Pressure
Ratios is one of theoretical interest and considerable prac-
tical importance. It has the merit of being founded on
firm theoretical grounds and confirmed by observation
so closely that the final error of computation is largely a
function of the pressure errors at 1 and 2 kilometers above
sea.allisvel-—and these have been shown to be satisfactorily
small.
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THE WINDS OF OKLAHOMA AND EAST TEXAS.

By Jonn A. Ry, Meteorologist.

[Aerological Station, Broken Arrow, Okla., September 26, 1923.]

SYNOPSIS,

Some of the outstanding features of surface and free-air winds over
QOklahoma and east Teaxs are presented in tables and graphs, The
data are mainly based on four years’ pilot balloon records at three
stations: Broken Arrow and Fort Rill, Okla., and Groesbeck, Tex.,
with a total of 7,075 flights, The paper does not aim at completeness
for all phases of the wind even for the region covered; an exhaustive
compilation of the data for this and other geographic groups is to be

ublished later by the Aerological Division as Part II of An Aero-
E)ﬁ'cal Survey of the United States.
otable features of the winds of this group are: At the surface, largely
predominating south winds in summer and alternate north and south
winds in winter, with a small percentage of east and west winds in all
seasons. In the free air, a clockwise shift, with one exception, into a
pronounced westerlﬂmclirift aloft in all seasons; a north component
amounting to more t. 50 per cent at 4,000 meters and higher over the
whole region in all seasons. The one exception is the summer winds

of Texas in which a counterclockwise shift occurs, the wind having a
northeasterly drift above 4,000 meters.

Graphs have been drawn to show the mean seasonal direction and
velocity at the three stations; the percentage frequency of directions
for summer, winter, and the year at four selecteg levels; the annual
march of wind speeds based on monthly averages for the region as a
whole; features of the diurnal march and the nocturnal stratification of
speeds at low altitudes; and the frequency of high winds at ordinary

ying levels.

Free-air winds are best studied in geographic groups
such that conditions are nearly uniform ughout tﬁe
group but differ in some particulars from conditions in
other groups. Upper air conditions at various levels are
also more uniformly distributed than are those at the
surface, so that the network of aerological stations need



